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ABSTRACT
Oil reservoir exploration is booming, given the increasing energy
demand worldwide. The existence of Impermeable Regions (IR)
in the oil reservoir (i.e., underground areas that allow only few
hydrocarbons-collecting fluids to pass through) still hinders cur-
rent production performance to a great extent. Research efforts have
been invested into IR detection and mapping. The state of the art
solution [1] leverages nanoscale sensor networks to approximately
characterize the location of a single IR in the underground oil reser-
voir. However, the characterization accuracy is rather low. In addi-
tion, existing solutions are not applicable to more heterogeneous
reservoirs, which reflects, in fact, a more realistic problem scenario.
In this paper, we investigate and address the limitations of state
of the art solutions in two aspects: 1) we provide a sub-terahertz
(THz) communication channel to reflect realism of nanocommu-
nication in the underground; 2) we develop a sensor path (i.e.,
simulated streamlines along which sensors are assumed to flow)
reconstruction workflow to map a more heterogeneous reservoir
with more IRs. Through simulations, we show that our proposed
solution achieves an improvement of IRs mapping performance,
when compared to the state of the art solution.

CCS CONCEPTS
• Applied computing → Telecommunications; • Computing
methodologies→ Shape modeling.
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1 INTRODUCTION
The demand for energy is continually increasing. As indicated [2],
the energy requirements are expected to increase 1.5 times in the
next two decades. In supplying the energy worldwide, the oil and
gas industry still plays an important role [3]. Energy companies
are always seeking efficient ways to extract resources from Under-
ground Reservoirs (UR), e.g., oil, gas or geothermal reservoirs. To
achieve efficient extraction, they perform reservoir characterization
before production. Reservoir characterization is a commonly used
technique in the field to facilitate the understandings of the UR.
Specifically, the vertical and lateral heterogeneity in the reservoir
can be inferred through analysis of various datasets [4]. The dataset
typically consists of data of miscellaneous sources in the field. By
appropriately leveraging petroleum engineering techniques to solve
posed inverse problems given the dataset, geological and fluid prop-
erties of interests (such as lithology, porosity and fluid saturations)
can be obtained. For instance, in [5], wireline dipole and mono-
pole data is utilized to perform high resolution imaging of far-field
horizontal and slanted well structures. However, due to the high
costs of collecting data from field, most of these methods are not
economical. In addition, the inherent noise in the field data usually
leads to inaccurate reservoir characterization results.

Impermeable area detection and characterization are key parts of
characterization for conventional reservoir exploration. However,
only few efforts have been dedicated to this problem. Traditional
methods, such as well testing, have been used to map the spatial
information of impermeable areas [6, 7]. To detect an impermeable
area, well testing used to be the only available technique, which
generates an imprecise picture of the underground IR geometry.
More recently, [8] points out seismic signals can be reflected by
reservoirs and seals, which are two important components of strati-
graphic traps. The reflected signals vary in configuration, amplitude,
continuity, frequency and interval velocity. Hence, the variational
reflected signals can be leveraged to infer stratification and de-
positional features. In unconventional reservoirs, the reservoirs
themselves can be regarded as an IR. Researchers [9, 10], from a
fracture simulation point of view, have worked on fracture geome-
try characterization and monitoring. However, none of these efforts
provides accurate characterization of IR location and shape.

In [1], a new solution was proposed for the IR mapping prob-
lem in conventional oil reservoirs. The solution is based on 2D-
reconstruction computer graphics techniques. Nanoscale sensors
equipped with terahertz (THz) communication capabilities were
employed. The nanosensors are assumed to flow on streamlines
along with hydrocarbon fluids. In this paper, we employ similar
techniques (e.g., nanocommunication and streamline simulation),
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but we investigate the problem of more complex IR layouts. The
main contributions of this paper are summarized as follows:

• It presents a (sub-)Thz communication channel model to
approximate the communication behavior of nanosensors
when they flow through an underground reservoir.

• It presents a nanosensor path reconstruction problem for-
mulated as a streamline reconstruction workflow.

• It presents a solution to the path reconstruction problem for
underground environments with higher heterogeneity, than
state of the art solutions [1], thus addressing more realistic
and complex underground scenarios.

This paper is structured as follows: Section 2 reviews background
material and state of the art solutions for reservoir mapping. Sec-
tion 3 gives the system model and formulates the research problem.
In Sections 4 and 5, we present the proposed solution and implemen-
tation, and performance evaluation results, respectively. Finally, we
conclude the paper in Section 6 with ideas for future work.

2 STATE OF THE ART
In [1], for the first time the IR mapping problem is solved using
nanodevices equipped with wireless communication capabilities.
The initial results seemed promising in that the proposed algorithm
can minimize the number of wells while finding the location of a
single impermeable area. However, the final characterization still
deviates much from expectations. For instance, the first evaluation
metric 𝛼(𝑘) indicates 40% error, indicating a large potential of im-
provement. Besides, the algorithm in [1] is feasible only for the
problem with one IR, and not applicable to oil production environ-
ments with higher heterogeneity (e.g., more than one IR), which are
more realistic in the real world. In addition, the THz channel model
is simplistic and the feasibility of the THz-based communication
for oil exploration is not investigated.

A few researchers addressed the communication channel mod-
elling problem in nanoscale and underground environments [11,
12]. [13] points out applying optical nano-antenna arrays and beam-
forming could help increase the EM transmission distance to a few
millimeters. [14] is pioneering work on THz channel modelling
for underground oil reservoirs by referencing developed channel
models. In the numerical results, when the transmitting power and
minimum received signal power is set to be 0 dBm and -100 dBm
respectively, the communication range of the THz EM waves in
oil and water mixture is no more than 1 cm in the 0.1 Thz to 120.0
THz band. [15] further employs the developed models to model
the communication channels in oil for megahertz (MHz) and gi-
gahertz (GHz) frequencies. Nevertheless, the hyper-parameters of
neither [14] nor [15] are clearly investigated, to address the feasi-
bility of THz-based nanocommunication for oil exploration.

A streamline simulation using numerical simulations was de-
veloped for petroleum production environments [16, 17]. It aims
to provide references and better understanding of production sys-
tem performance in four aspects: reservoir-flow surveillance, flow
simulation, history matching and flood management [18]. Recently,
although various applications in petroleum engineering solve opti-
mization and reconstruction problems through streamline simula-
tion techniques [18], employing streamline simulation techniques
for mapping IRs is still an open research area.
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Figure 1: Single Impermeable Region (IR) mapping in oil
exploration using one pair of wells, (𝑊 1,𝑊 2). Nanodevices
(blue circles) inserted at𝑊 1 flow along the 𝑘-th streamline
path 𝐿1,2

𝑘
until they are collected at𝑊 2.

3 PRELIMINARIES AND PROBLEM
FORMULATION

Before we formulate the problem of impermeable region mapping
for oil reservoirs, we present the behavior of a nanodevice in the
system through a mobility model, a channel model and a communi-
cation model. As shown in Figure 1, nanodevices, equipped with
wireless communication (sub-)THz radios [14], are injected into
the reservoir through injection wells. It’s important to note we
continuously deploy massive nanosensors into the reservoir con-
tinuously in practice. This is due to the fact that real reservoirs are
usually in kilometers scale, while the nanosensors are in nanoscale.
Each nanodevice is a receiver and transmitter and flows along a
streamline. Therefore, in this paper, the streamlines are modelled
as flow paths of those nanodevices. Nanodevices transmit beacons
periodically and record the received signal strength indicator (RSSI)
values from other nanodevices. When nanodevices are retrieved
from production wells, the RSSI data stored in each receiver is used
for interpreting the distances between transmitters and receivers,
which will be further leveraged to map the underground imperme-
able regions. In this paper, we assume the deployed nanodevices
can only communicate with other nanodevices flowing along the
same streamline.

We introduce two definitions of physical variables from
petroleum engineering for better understanding of our problem
formulation: porosity 𝜌 is defined as the volume of pores within
one unit of soil/rock, water saturation𝑤𝑠𝑎𝑡 is the volume of water
contained in each unit volume of pores in soil/rock:

𝜌 =
𝑉𝑝𝑜𝑟𝑒

𝑉

𝑤𝑠𝑎𝑡 =
𝑉𝑤𝑎𝑡𝑒𝑟

𝑉𝑝𝑜𝑟𝑒

(1)

3.1 System Models
We consider a 2D oil reservoir plane G to be explored for oil as
shown in Figure 1. The exploration is performed by the wells
{𝑊 𝑖 |𝑖 ∈ 𝐼 }, where 𝐼 is the index set of all wells. Each well𝑊 𝑖

can be either an injection well or production well. Water and nan-
odevices are injected into injectionwells. As nanodevices flow along
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Figure 2: Cross-area plot: nanoSensors are flowing in the un-
derground pores while communicating with each other us-
ing THz radios.

streamlines through the underground, they actually flow through
microscale or even nanoscale pores as shown in Figure 2. Those
pores are filled with water, oil or both. Oil, water and nanodevices
are collected from production wells where the distance between
transmitters and receivers is retrieved. It should be noted that wells
that are initially injection wells can become production wells later,
and vice versa.

3.1.1 Mobility Model. Mobility model defines how nanosensors
move in the underground. Between a well pair (𝑊 𝑖 ,𝑊 𝑗 ), 𝑖 ̸= 𝑗 ,
where𝑊 𝑖 used as the injection and𝑊 𝑗 used as the production, We
collect all streamlines as {𝐿𝑖, 𝑗

𝑘
|𝑘 ∈ 𝐾𝑖, 𝑗 }. We deploy nanodevices at

a fixed rate, assuming there are always 𝑁 𝑖, 𝑗

𝑘
nanodevices along the

chosen streamline 𝐿𝑖, 𝑗
𝑘

shown in Figure 3. Streamlines are modelled
as the flow path of nanodevices. We assume that each nanodevice
will strictly follow one streamline in the underground reservoir.

3.1.2 Channel Model. In this subsection we discuss how we model
the communication channel between nanosensors. Figure 2 is the
cross-area plot showing how nanodevices move through the under-
ground reservoir pores in nano(micro-)scale. The grey area outlined
the matrix materials inside rocks. The pores are remained open for
water, oil and nanodevice mixtures to flow through. In this paper,
we assume no gas in pores in the underground. Nanodevices are
capable of (sub-)THz radio communication with other nanodevices
while flowing through pores.

We consider nanocommunication in real oil production. The
total propagation path loss, 𝑃𝐿, consists of 3 parts: spread loss 𝑃𝐿𝑠 ,
propagation loss through oil 𝑃𝐿𝑜𝑖𝑙 , and soil 𝑃𝐿𝑠𝑜𝑖𝑙 . 𝑃𝐿𝑜𝑖𝑙 and 𝑃𝐿𝑠𝑜𝑖𝑙
are weighted by leveraging definitions in Equation (1). It should be
noted that the absorption loss through water is already considered
in the absorption loss through soil. 𝑃𝐿 is given in Equation (2), and
𝑃𝐿𝑠 is given in Equation (3).

𝑃𝐿 = 𝑃𝐿𝑠 + 𝜌 (1 −𝑤𝑠𝑎𝑡 ) 𝑃𝐿𝑜𝑖𝑙 + (1 − 𝜌 (1 −𝑤𝑠𝑎𝑡 ))𝑃𝐿𝑠𝑜𝑖𝑙 (2)

𝑃𝐿𝑠 = 20 lg
(

4𝜋 𝑓 𝑑
𝑐

)
(3)

where 𝑓 is frequency in 𝐻𝑧, 𝑑 is the propagation distance in𝑚𝑒𝑡𝑒𝑟 ,
𝑐 is the light speed in𝑚/𝑠 . In [11, 15], the EMwave propagation loss

through oil and soil has the same expression shown in Equation (4).

𝑃𝐿𝑜𝑖𝑙 (𝑠𝑜𝑖𝑙 ) = 6.4 + 20 lg(𝑑) + 20 lg(𝛽) + 8.69𝛼𝑑 (4)

where𝛼 (dB/m), attenuation constant, and 𝛽 (rad/m), phase constant,
can be derived as in Equation (5) [19].

𝛼 = 2𝜋 𝑓

√√√√√
`𝜖 ′𝑐𝑟𝜖0

2


√

1 +
(
𝜖 ′′𝑐𝑟
𝜖 ′𝑐𝑟

)2
− 1


𝛽 = 2𝜋 𝑓

√√√√√
`𝜖 ′𝑐𝑟𝜖0

2


√

1 +
(
𝜖 ′′𝑐𝑟
𝜖 ′𝑐𝑟

)2
+ 1


(5)

where 𝑓 is the frequency in 𝐻𝑧, ` is the magnetic permeability
set to be 1.26 × 10−6𝐻/𝑚, 𝜖0 is the permittivity in free space, i.e.
8.854×10−12𝐹/𝑚. 𝜖 ′𝑐𝑟 and 𝜖 ′′𝑐𝑟 are real and imaginary part of complex
relative permittivity or complex dielectric constant 𝜖𝑐𝑟 , respectively.
It should be noted that 𝜖 ′𝑐𝑟 and 𝜖 ′′𝑐𝑟 are dimensionless variables
depending on propagation medium properties. For oil medium,
we adopted the parameter setup in [15] at 2.45 GHz, i.e., 𝜖 ′𝑐𝑟 =
2.19 and 𝜖 ′′𝑐𝑟 = −0.007. For soil medium, we obtain 𝜖 ′𝑐𝑟 and 𝜖 ′′𝑐𝑟 by
following the model in [20, 21] as shown in Equations (6)-(11). The
corresponding hyper-parameters are shown in Table 1 where the
variables with unit 1 are dimensionless variables.

𝜖𝑐𝑟 = 𝜖 ′𝑐𝑟 − 𝑗𝜖 ′′𝑐𝑟 (6)

𝜖 ′𝑐𝑟 =
[
1 +

𝜌𝑏

𝜌𝑠

(
(𝜖𝑠 )𝛼

′ )
+ (𝑚𝑣)𝛽

′ (
𝜖 ′
𝑓 𝑤

)𝛼′

−𝑚𝑣

]1/𝛼′

(7)

𝜖𝑠 = (1.01 + 0.44𝜌𝑠 )2 − 0.062 (8)

𝜖 ′′𝑐𝑟 =
[
(𝑚𝑣)𝛽

′′ (
𝜖 ′′
𝑓 𝑤

)𝛼′ ]1/𝛼′

(9)

𝛽 ′ = 1.2748 − 0.519𝑆 − 0.152𝐶 (10)

𝛽 ′′ = 1.33797 − 0.603𝑆 − 0.166𝐶 (11)

Table 1: Parameters for calculating the complex dielectric
constant 𝜖𝑐𝑟

Parameter Physical Mean Value Unit
𝜌𝑏 bulk density 1.5 𝑔/𝑚3

𝜌𝑠 specific density of solid soil particles 2.66 𝑔/𝑚3

𝜖𝑠 dielectric constant of soil solids 1
𝛼 ′ empirically determined 0.65
𝛽 ′ empirically determined
𝛽 ′′ empirically determined
𝜖 ′
𝑓 𝑤

real part of complex dielectric constant of water 4.77 [22] 1
𝜖 ′′
𝑓 𝑤

imaginary part of complex dielectric constant of water 3.78 [22] 1
𝑆 sand particle percent 0.5 1
𝐶 clay particle percent 0.15 1
𝑚𝑣 water volume fraction 0.05 1

The total path loss 𝑃𝐿 is computed using Equation (2). The water
saturation𝑤𝑠𝑎𝑡 and porosity 𝜌 are set to be 0.25 and 0.2, respectively.
The path loss with respect to frequency and distance is shown in
Figure 4. From Figure 4, we know that path loss 𝑃𝐿 in Equation (2)
is a function of frequency 𝑓 and distance 𝑑 , and can be defined as:

𝑃𝐿 = 𝑃𝐿(𝑑, 𝑓 ). (12)
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. 𝑑(𝑠, 𝑠 + 1), 𝑑(𝑠, 𝑠 + 2), 𝑑(𝑠, 𝑠 + 3) denote the Euclidean distance between
(𝑄𝑠 , 𝑄𝑠+1), (𝑄𝑠 , 𝑄𝑠+2), and (𝑄𝑠 , 𝑄𝑠+3), respectively.

Figure 4: Path loss as a function of frequency and distance

Note when frequency 𝑓 is fixed, 𝑃𝐿 only depends on 𝑑 :

𝑃𝐿 = 𝑃𝐿(𝑑). (13)

Path loss 𝑃𝐿 obtained from Equation (13) will be used to compute
receiving power 𝑃𝑟 𝑣 shown in Equation (14). Note that the receiv-
ing power 𝑃𝑟 𝑣 is also called the received signal strength indicator
(RSSI), which is recorded in nanoreceivers. In this paper, the trans-
mitting power 𝑃𝑡𝑥 , transmitting gain 𝐺𝑡𝑥 and receiving gain 𝐺𝑟 𝑣

are assumed to be fixed for nanodevices communication while they
flow along the streamlines.

𝑃𝑟 𝑣 = 𝑃𝑡𝑥 +𝐺𝑟 𝑣 +𝐺𝑡𝑥 − 𝑃𝐿 (14)

3.1.3 Communication Model. To describe how the nanodevices
communicate with each other, we present the communication
model here. As mentioned earlier in Section 3.1, nanosensors can
only communicate with others on the same streamline. To make the
notations simpler, we use {𝑄1, 𝑄2, · · · , 𝑄𝑁 } as the points, which are
locations of nanodevices, along streamline {𝐿𝑖, 𝑗

𝑘
} shown in Figure 3.

In the following, all𝑄𝑠 will refer to a specific streamline, depending
on context. We refer to the (sub-)THz EM signal communication
between a pair of nanodevices 𝑄𝑠 and 𝑄𝑡 , let 𝑄𝑠 be the transmitter
and 𝑄𝑡 be the receiver without loss of generality. The receivers 𝑄𝑡

detect RSSI sent from other nanodevices. In this paper, we assume
every transmitter sends periodical THz EM signal with the same
transmitting power. So, we can invert Equation (13) to compute the
distance between the (nano-)transmitters and receivers.

In Figure 3, 𝑁 nanodevices are deployed on the stream-
line 𝐿𝑖, 𝑗

𝑘
. Within each streamline, each nanodevice 𝑄𝑠 can com-

municate with its several predecessor and successors, such as
{· · · , 𝑄𝑠−2, 𝑄𝑠−1, 𝑄𝑠 , 𝑄𝑠+1, 𝑄𝑠+2, · · ·}. From Figure 4, we see the path
loss increases as distance increases. So function 𝑃𝐿 defined in Equa-
tion (13) is monotonous in terms of distance 𝑑 and subsequently
invertible. Therefore, we define the distance function between two
nanodevices 𝑄𝑠 and 𝑄𝑡 as:

𝑑(𝑠, 𝑡 ) := |𝑄𝑠 −𝑄𝑡 |= 𝑃𝐿−1(𝑅𝑆𝑆𝐼 (𝑄𝑠 , 𝑄𝑡 )) (15)

In practice, it is hard for nanodevices to communicate when they are
too far away from each other. So the distance function above is only
available when |s-t| is not large. However, in this paper we only as-
sume to know the function 𝑑(𝑠, 𝑡 ) when |𝑠−𝑡 |<= 3, i.e. we only need
the distances from six nodes {𝑄𝑠−3, 𝑄𝑠−2, 𝑄𝑠−1, 𝑄𝑠+1, 𝑄𝑠+2, 𝑄𝑠+3} to
node 𝑄𝑠 .

3.2 Problem Formulation
In this paper, we primarily aim to map the shapes and locations of
impermeable areas in an underground oil reservoir. Figure 3 gives
an example of how our problem looks like. 9 square impermeable
blocks are located inside a 100 ft × 100 ft reservoir. 3 wells, 1 injec-
tion and 2 production, are forming 2 well pairs. The coordinates
of the 3 wells are known. The streamlines between the well pair
(𝑊 𝑖 ,𝑊 𝑗 ), 1 <= 𝑖, 𝑗 <= 3, in various shapes, are bypassing the 9
impermeable blocks from different directions.
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Figure 5: Two possible shapes of four-point polyline.𝑄2 and
𝑄3 “turn” to the same directions in the left picture and to
opposite directions in the right picture.

Based on the discussion above and Equation (15), by leveraging
nanotechnology, we ultimately obtain distances among each group
of four consecutive neighboring nanosensors. These, combined
with injection and production well coordinates, are the only input
information we can leverage. The problem we aim to solve in this
paper is then defined to be: Given the distance information among
nanodevices, how to reconstruct the streamlines and then compute
the shape and location of the impermeable areas.

4 PROPOSED SOLUTION
One can notice that the streamlines can never go through the im-
permeable areas but can flow really “close” along the boundary
of the impermeable areas. So the basic idea to characterize the
impermeable areas is to use several wells surrounding the imper-
meable regions, then use nanodevices to run along the streamlines
among the injection wells and production wells. Overlapping all
the plots of streamlines collected from different pairs of wells, we
can directly obtain the “inaccessible regions”, which are exactly
the impermeable areas from the plot. Figure 11 is the result of an
example which will be explained in later sections.

The main challenge of the mapping method is how to reconstruct
the shape of the streamlines since we only have the information of
the distances among local sensors. Then, the next challenge is how
to reconstruct the shape of all streamlines only using the distance
information above. For example, if we flip a reconstructed stream-
line along the straight line of the injection well and the production
well, the symmetric streamline still satisfies all distance criteria.
Consequently, we have to pick the correct streamline among all
possible solutions. We solve these two challenges as follows.

4.1 Local Reconstruction
Our claim is that knowing the Euclidean distances among four se-
quential points is enough to reconstruct the shape of the four-point
polyline under rigid body transformation. If we know the distances
from each point along the streamline to its three predecessor points
and its three successor points, we can exactly reconstruct the shape
of the whole streamline under rigid body transformation.

Given four points {𝑄1, 𝑄2, 𝑄3, 𝑄4}, the only information we have
is the six distances 𝑑𝑖 𝑗 = |𝑄𝑖 −𝑄 𝑗 |, 𝑖 ̸= 𝑗 . So we can use 𝑑12, 𝑑23 and
𝑑13 to compute the positive external angle \2 between vector

−−−−→
𝑄1𝑄2

and vector
−−−−→
𝑄2𝑄3 in figure 5 from:

\𝑖 = 𝜋 − arccos
(𝑄𝑖−1 −𝑄𝑖 ) · (𝑄𝑖+1 −𝑄𝑖 )
|𝑄𝑖−1 −𝑄𝑖 | |𝑄𝑖+1 −𝑄𝑖 |

. (16)

The same way we can compute \3. Notice this external angle is
only the absolute value of the angle, we don’t know the sign, i.e.
we don’t know if the angle “turns” to the left or right.

Sincewe have now the distances𝑑12, 𝑑23, 𝑑13 and the two external
angles \2 and \3, there are only two possible shapes for the four
points shown in Figure 5. Fortunately in the two shapes in figure 5,
the distances between 𝑄1 and 𝑄4 are different. More specifically,
we can use analytical geometry to compute the closed form of the
squared distance between 𝑄1 and 𝑄4 in the left shape and right
shape in Figure 5 as follows:

(17)
𝑑(𝐿)2 =

𝑑2
12 − 𝑑

2
23 + 𝑑2

34 + 𝑑2
13 + 𝑑2

24
2

+
(𝑑2

12 − 𝑑
2
13)(𝑑2

34 − 𝑑
2
24)

2𝑑2
23

− 16
∆(𝑄1, 𝑄2, 𝑄3)∆(𝑄2, 𝑄3, 𝑄4)

2𝑑2
23

(18)
𝑑(𝑅)2 =

𝑑2
12 − 𝑑

2
23 + 𝑑2

34 + 𝑑2
13 + 𝑑2

24
2

+
(𝑑2

12 − 𝑑
2
13)(𝑑2

34 − 𝑑
2
24)

2𝑑2
23

+ 16
∆(𝑄1, 𝑄2, 𝑄3)∆(𝑄2, 𝑄3, 𝑄4)

2𝑑2
23

,

where ∆(·, ·, ·) is the absolute value of the area of a triangle, which
is unique to the lengths of three edges of the triangle. Then we
compare 𝑑14 to the two distances above. If 𝑑14 equals 𝑑(𝐿), then
vertices 𝑄2 and 𝑄3 must “turn” to the same direction. If 𝑑14 equals
𝑑(𝑅), 𝑄2 and 𝑄3 must “turn” to opposite directions. Now we claim
that the six distances can uniquely define the shape of the four-point
polyline.

As for the whole streamline, we can use the local reconstruction
to compute a unique curve under translation, rotation and reflection.
Given vertices {𝑄1, 𝑄2, · · · , 𝑄𝑁 }, we use Equation (16) to compute
positive external angles: {\𝑠 |𝑠 = 2, 3, · · · , 𝑁 − 1}. Then we use the
condition above on vertices {𝑄𝑠−1, 𝑄𝑠 , 𝑄𝑠+1, 𝑄𝑠+2} to check if \𝑠 and
\𝑠+1 will “turn” to the same directions.

Assume vertex 𝑄1 is always at the original point (0,0), and 𝑄2 is
(𝑑12, 0) and \2 is positive, i.e., {𝑄1, 𝑄2, 𝑄3} is “turning” left. Assume
we know the location of {𝑄1, 𝑄2, · · · , 𝑄𝑠 }, then we know the value
and sign of \𝑠−1 and vector 𝑄𝑠−1𝑄𝑠 . We can compute angle \𝑠 , we
know the distance 𝑑𝑠,𝑠+1, then we can compute the location of𝑄𝑠+1.
By mathematical induction, we can compute the locations of all
{𝑄1, 𝑄2, · · · , 𝑄𝑁 }. Thus we proved we can reconstruct the shape of
the whole streamline. If \2 has the opposite sign, i.e.,𝑄2 is “turning”
right, then we obtain the only other curve satisfying all geometry
criteria. In the next section, we’ll show how to pick between the
two curves.

4.2 Global Reconstruction
Using the local reconstruction, we reconstruct the shapes of all
streamlines originated at (0,0). Then we rotate and translate all
streamlines separately so that the start and end points of each
streamline are aligned to the injection and production wells asso-
ciate to the streamline. The left side of Figure 6 shows the result of
the translation and rotation.

Each streamline can be flipped along the straight line through
the injection and production wells. Notice that a streamline cannot
intersect with other streamlines. First we compute the total number
of intersections of all curves. Each time we pick one curve 𝐿𝑖, 𝑗

𝑘

with most intersections and the set of curves intersecting with 𝐿𝑖, 𝑗
𝑘
:
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Figure 6: Left: each streamline is reconstructed separately
so they may intersect with each other. Right: some of the
streamlines are flipped properly, no intersection indicates
we reconstructed the streamline successfully.

Figure 7: [1] solution: a near-circle shape outlinedwith solid
black line is formed by arc reconstruction for approximate
IR characterization. The coordinates of 4 IR vertices are
(31,31), (60,31), (60,60) and (31,60).

𝐿
𝑖, 𝑗

𝑘
= {𝐿𝑡 |𝐿𝑡 ∩ 𝐿

𝑖, 𝑗

𝑘
̸= ∅&𝐿𝑡 ̸= 𝐿

𝑖, 𝑗

𝑘
}. We try to flip curve 𝐿𝑖, 𝑗

𝑘
or

the set 𝐿𝑖, 𝑗
𝑘

to see which one would lead to a larger intersection
number reduction. Then flip that curve or curve set. We found in
our experiments that this heuristic greedy method can find the
correct answer with half the number of streamline iterations. Other
picking methods could be adopted but were beyond the scope of
this paper. The right side in Figure 6 shows the result of our flipping
which is the final result of our reconstruction algorithm.

5 PERFORMANCE EVALUATION
In this section, we compare our streamline reconstruction solution
with the state of the art [1] (SOTA) by visualizing the quality of the
IR mapping. We ran our streamline reconstruction solution based
on the same experiment set up as in [1]: a 100 × 100𝑓 𝑡2 reservoir
with a 30 × 30𝑓 𝑡2 IR. For the sake of generality, we set the position
of the IR at an off-center position. The square box with black dashed
outline in Figure 7 denotes the IR. This experiments set up also
applies to our streamline reconstruction solution.

In Figure 7, after deploying 12 mapping operations (i.e., 12 wells),
the SOTA arc reconstruction solution approximately characterizes
the single IR with a near-circle shape outlined with black solid lines.
We can see clearly that the near-circle shape still does not match
with the square IR, indicating the potential for improvement. On

Figure 8: Proposed solution: streamline reconstruction
achieves nearly 100% accuracy in IR characterization.

Figure 9: With 3 wells employed, a near-optimal characteri-
zation can still be achieved using streamline reconstruction

the contrary, when the 12 wells are deployed, we see our near 100%
accurate characterization in Figure 8. All streamlines combined
give the exact shape and locations of the squared IR depicted with
dashed lines. This shows our streamline reconstruction outperforms
the SOTA solution [1].

We also show an additional advantage of streamline reconstruc-
tion (i.e., proposed solution) over SOTA arc reconstruction [1]:
streamline reconstruction is more efficient, with fewer resources
needed. In Figure 9, where only 3 wells are deployed, we still see
near optimal characterization performance, which is much better
than that in Figure 7 requiring 12 wells. In light of extremely high
cost of drilling wells, our solution reduces the exploration expenses
to a great extent.

The proposed streamline reconstruction solution also enjoys the
benefits of the high generality for highly heterogeneous reservoirs,
which reflects the realism in real reservoirs. In Figure 10, 4 IRs rep-
resent higher heterogeneity in the reservoir compared the single IR
in Figure 7. Figure 10 shows that SOTA solution finally reaches a
near-square characterization outlined with black solid line, which
does not match with any of the 4 IRs. This unveils the underlying
single IR problem scenario assumption of SOTA solution, which
consequently undermines the SOTA solution performance in the
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Figure 10: [1] Solution: For the reservoir with higher hetero-
geneity, arc reconstruction solution cannot achieve feasible
mapping performance

Figure 11: Proposed solution: Streamline reconstruction so-
lution still characterizes the higher heterogeneous reservoir
with near-optimal accuracy.

problem scenario with more than one IR. In contrast, we can still
characterize the 4 IRs with near optimal accuracy using stream-
line reconstruction solution. In Figure 11, 3 wells are employed to
accurately characterize the shapes and locations of all of the 4 IRs.

6 CONCLUSIONS AND FUTUREWORK
During conventional oil reservoir explorations, the existence of
impermeable regions hinders the performance of current produc-
tion system. Precise characterizations of those impermeable re-
gions plays a key role in improving overall production system
performance. In this paper, by exploiting nanodevices’ THz com-
munication capability, we characterize shapes and locations of IRs
in highly heterogeneous oil reservoirs. We present a THz chan-
nel model for such nano-communications between nanosensors,
which are initially injected into underground through injection
wells. As nanosensors move through the oil reservoir, they flow
along the simulated paths, i.e. streamlines, to the production wells.
We present a general path reconstruction workflow to map the
path shapes. In this way, we map the shapes and locations of IRs.
Through comparisons with state of the art solutions, we show the
superior performances of our method. Ideas for future work are

as follows: a) In this paper we do not consider the RSSI measure-
ments errors due to noise. This will result in inaccurate distances
among nanosensors. For our particular application in this paper, the
spatial and temporal variations of water and oil saturation in the
underground reservoir may lead to additional spatial and temporal
distance noises; b) The generic nanosensor path reconstruction
workflow has potential for applications in many other areas, e.g.,
medical imaging and micro-robots localization in disaster areas.

ACKNOWLEDGMENTS
This work was supported by NSF grant #1253968. We thank Schlum-
berger for the Eclipse software license donation.

REFERENCES
[1] L. Jin, L. Zuo, Z. Yan, and R. Stoleru. Nanocommunication-based impermeable

region mapping for oil reservoir exploration. In ACM International Conference
on Nanoscale Computing and Communication (NanoCom), 2019.

[2] X. Kong and M.M. Ohadi. Application of micro and nano technologies in the
oil and gas industry-overview of recent progress. In Proceedings of the SPE Abu
Dhabi International Petroleum Exhibition and Conference, 2010.

[3] H. Saadawi. Application of renewable energy in the oil and gas industry. In
Society of Petroleum Engineers, April 2019.

[4] A. Shams A. Al-Ali, K. Stephen. Toward reservoir characterization-comparing
inversion methods of a heterogeneous carbonate reservoir in supergiant onshore
field. In International Petroleum Technology Conference, January 2020.

[5] P. S. Denis and D. T. Thierry-Laurent. Wellbore far-field imaging for high resolu-
tion reservoir characterization. In International Petroleum Technology Conference,
January 2020.

[6] P. Britto and A. Sageev. The effects of size, and orientation of an impermeable
region on transient pressure testing. In SPE California Regional Meeting, 1987.

[7] M. Nestor and C. Heber. Detection of linear impermeable barriers by transient
pressure analysis. In SPE Conference Paper, Utah, USA, 1983.

[8] S. H. Zhang, Y. Xu, M. Abu-Ali, and M. K. Teng. Seismic facies recognition and
stratigraphic trap characterization based on neural networks. In International
Petroleum Technology Conference, March 2019.

[9] D. Qiu, R. Vamegh, B. Damjanac, and X. Wan. Narrow versus wide fairway
fracture geometry. In U.S. Rock Mechanics/Geomechanics Symposium, June 2019.

[10] S. Anusarn, L. Jiawei, and W. Kan. Development of efficiently coupled fluid-
flow/geomechanicsmodel to predict stress evolution in unconventional reservoirs
with complex-fracture geometry. SPE Journal, 2018.

[11] M. Vuran and I. F. Akyildiz. Channel model and analysis for wireless underground
sensor networks in soil medium. Physical Communication, 3(4):245 – 254, 2010.

[12] I. F. Akyildiz, Z. Sun, and M. Vuran. Signal propagation techniques for wireless
underground communication networks. Physical Communication, 2(3):167 – 183,
2009.

[13] A. Sangwan, H. Pandey, P. Johari, and J. M. Jornet. Increasing the communi-
cation distance between nano-biosensing implants and wearable devices. In
2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless
Communications (SPAWC), pages 1–5, 2018.

[14] M. A. Akkaş, I. F. Akyildiz, and R. Sokullu. Terahertz channel modeling of under-
ground sensor networks in oil reservoirs. In 2012 IEEE Global Communications
Conference (GLOBECOM), pages 543–548, 2012.

[15] M. A. Akkas. Channel modeling of wireless sensor networks in oil. Wireless
Personal Communications, 95:4337–4355, 2017.

[16] A. Datta-Gupta and M.J. King. Streamline Simulator. Society of Petroleum
Engineers, Richardson, Texas A&M University, 2005.

[17] L.H. Zuo, J. Lim, R.Q. Chen, and M.J. King. Efficient calculation of flux conserva-
tive streamline trajectories on complex and unstructured grids. In 78th EAGE
Conference and Exhibition, Vienna, Austria, 2016.

[18] M.R. Thiele, R.P. Batycky, and D.H. Fenwick. streamline simulation for modern
reservoir-engineering workflows. Journal of Petroleum Technology, 62, 2010.

[19] Matthew N. O. Sadiku. Elements Of Electromagnetics. 3rd. edition, 1989.
[20] N. R. Peplinski, F. T. Ulaby, andM. C. Dobson. Corrections to "dielectric properties

of soils in the 0.3-1.3-ghz range". IEEE Transactions on Geoscience and Remote
Sensing, 33(6):1340–, 1995.

[21] N. R. Peplinski, F. T. Ulaby, and M. C. Dobson. Dielectric properties of soils
in the 0.3-1.3-ghz range. IEEE Transactions on Geoscience and Remote Sensing,
33(3):803–807, 1995.

[22] T. Meissner and F. J. Wentz. The complex dielectric constant of pure and sea
water from microwave satellite observations. IEEE Transactions on Geoscience
and Remote Sensing, 42(9):1836–1849, 2004.


	Abstract
	1 Introduction
	2 State of the Art
	3 Preliminaries and Problem Formulation
	3.1 System Models
	3.2 Problem Formulation

	4 Proposed Solution
	4.1 Local Reconstruction
	4.2 Global Reconstruction

	5 Performance Evaluation
	6 Conclusions and Future Work
	Acknowledgments
	References

