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Abstract

We present a piece-wise rational, quadratic, interpolatory curve that is able
to reproduce circles and other elliptical or hyperbolic shapes. The curve is
curvature continuous except at infection points and points of local maximum
curvature appear only at control points and nowhere else. The local maximum
curvature property ensures that users have direct control over salient points of
the curve, and users can control if and where features such as cusps and loops
are generated.

To construct the desired curve, we formulated an energy that encodes the
desired properties to optimize using a boxed constrained optimization. We
provide an efficient algorithm for choosing an initial guess close to the solution
to accelerate convergence. In addition, we show how to automatically choose
the rational weights of the curve as part of the optimization to reproduce shapes
such as circles.

Keywords: interpolation, spline curves, κ-Curves, curvature, circle
reproduction
2010 MSC: 68U05, 65D17

1. Introduction

Interpolatory curves have a long history in curve modeling. As opposed
to approximating representations, interpolatory curves pass through a set of
control points specified by the user. While initially such control seems desirable,
interpolatory curves have been plagued by shape problems such as loops and5

cusps that can appear away from control points. Hence, it can be difficult for
the user to control the placement of these features or even whether or not cusps
and loops should exist within the curve.

Yan et al [1] showed that control points should be located at features of the
curve. Moreover, such features should not occur in the curve outside of the10

control points. Levien [2] pointed out that human beings are more sensitive
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to minima and maxima of curvature. Hence, it makes sense to identify local
maxima of curvature as features of the curve and require that local maxima of
curvature appear only at control points.

Beyond simply controlling features of the curve, the types of curves a model-15

ing tool can produce are also important. While polynomial curves are prevalent
due to their ease of use, circles are important shapes due to their common oc-
currence in every day life whether part of images or cylindrical or spherical 3D
shapes. Therefore, a useful curve representation would be able to represent
shapes such as circles exactly. In particular, if the interpolated control points20

lie on a circle, even if they are not equally spaced, it would be reasonable to
expect that a circle would be reproduced. When the control points do not lie
on a circle, the curve should be “fair” where “fair” means the curvature plot
should be simple [3].

For curve editing applications, it is also important that the curve moves25

continuously with movement of the control points. This requirement is satisfied
by many interpolatory curves, but not all. Clothoid splines [4], for example,
may suddenly change shape as their control points are dragged, introducing a
loop where there was none before [1].

In this paper, we introduce a piece-wise rational curve that interpolates a30

series of input points on a 2D plane. All local maxima of curvature only occur at
input points. For each input point, we compute a single rational quadratic curve
that interpolates the input point somewhere in its domain. We use the remain-
ing degrees of freedom in the curve to connect consecutive curves with curvature
continuity everywhere except at inflections. At these inflection points, the mag-35

nitude of curvature will be continuous though the sign (positive/negative) is
different. We build a box constrained optimization to solve for the final curve
and use an iterative method to compute a close initial guess to accelerate the op-
timization. Finally, we show how to automatically compute the rational weights
of the curve and incorporate this function into the optimization to ensure that40

circles are reproduced when the control points lie on a circle.

2. Related work

Piecewise polynomial and rational functions are commonly used to represent
interpolatory curves. There are many smooth interpolatory curve constructions
ranging from hermite curves [5], Catmull-Rom curves [6], and interpolatory sub-45

division curves [7]. While these constructions are easy to create and smooth,
these methods enforce only parametric properties rather than geometric prop-
erties such as curvature in their construction.

Beyond parametric continuity, researchers have studied the conditions for
geometric continuity as well. Schaback [8] describes how to create G2 connected50

quadratic Bézier curves to interpolate a series of non-inflecting points on a 2D
plane, which means the sign of the curvature of the curve should be always
positive or always negative. Feng [9] solves a similar problem and creates a
series of quadratic Bézier curves, each of which interpolates a control point on
the interior of the parameter range for the curve while remaining G2 at the55
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join points for the curve. Like Schaback, Feng’s approach is restricted to non-
inflecting points, though their numerical solver can be applied on an “S” shape.

κ-Curves [1] utilize Feng’s approach to interpolate a series of points at local
maximum curvature points on a 2D plane. The quadratic Bézier curve com-
ponents are parabolas and all have a unique max curvature point. κ-Curves60

enforce a local maximum curvature at all input points. However, the authors
relax the G2 condition at join points (where two Bézier curves meet) that form
inflection points. Instead the authors require that the absolute value of cur-
vature is continuous, which means that κ-Curves can reproduce curves with
inflection points. The authors enumerate the desired geometric criteria and use65

an iterative method to create a curve with those properties. Unfortunately,
the iterative method does not guarantee convergence of the result, though the
method appears to work well in practice. In addition, the polynomial nature
of their representation means that common shapes such as circles cannot be
reproduced.70

Arc or circular splines are widely used to represent circles. Hoschek [10]
inserts an arc of a circle between each pair of adjacent control points and con-
nect all arcs with G1 continuity at the control points. Meek [11], Yeung [12],
and Kurnosenko [13] utilize biarcs, two circular arcs connected using G1 point,
between two control points and interpolate given tangent vectors at the control75

points where the curve is G1. Meek [14] uses C-Shape curves of an arc and a
conic to interpolate points, tangent vectors, and curvatures. Piegl [15] devel-
oped a method to estimate the tangent directions at control points and then
interpolate data using biarcs. While these methods can obviously reproduce
circles, the curves lack curvature continuity and do not allow the user to control80

points of local maximum curvature.
Many non-polynomial methods have been developed to represent circles as

well. Wenz [16], Sequin [17] and Sun [18] compute local circle arcs using three
adjacent control points and then blend each pair of the adjacent circles to ob-
tain a C2 spline though the authors do not control the placement of curvature85

maxima. Schaefer [19] creates interpolatory curves through subdivision that can
reproduce circles, though the method is sensitive to the parametric spacing of
points along a circle.

Rational quadratic polynomial curves form conic sections and have the ca-
pability to represent circles exactly. Xu [20] and Canton [21] researched the90

geometric properties of conic sections in rational Bézier form. Similar to [8],
[22] explored the existence and properties of interpolating a set of non-inflecting
points using G2 connected conic splines. Yang [23] compute a G1 quadratic
interpolatory splines and then adjust the tangent vectors at control points and
the weights of the Bézier control points to achieve a G2 curve. In this paper, we95

use G2 almost everywhere connected conic splines to interpolate a series of 2D
points with local max curvature points only occur at the interpolated points.
Unlike many papers, our input points do not need to be non-inflecting. At in-
flection points, we maintain continuity in the magnitude of curvature, though
the sign of curvature inverts.100
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3. Spline Representation

To represent our curve, we use rational quadratic Bézier curves as our curve
primitive: one curve ci(t) for each interpolated input point {Qi}. We rep-
resent each curve ci(t) in standard form [5] defined by three control points
{Pi,0, Pi,1, Pi,2} with positive weight wi for Pi,1 and unit weights for the re-
maining control points:

ci(t) =
(1− t)2Pi,0 + 2(1− t)twiPi,1 + t2Pi,2

(1− t)2 + 2(1− t)twi + t2
, t ∈ [0, 1], wi > 0 (1)

with the constraint that there exists some ti ∈ (0, 1) such that

ci(ti) = Qi, (2)

and Qi is the local max curvature point of ci(t). We choose rational quadratics
for their ability to represent shapes such as circles. Furthermore, the curvature
profile for these curves are simple compared to higher degree curves. For wi >
1, the curves form one branch of a hyperbola and has at most one maximal105

curvature point. When wi = 1, the curve is a parabola and, again, has at most
one maximal curvature point. Finally, when wi < 1, the curve is an arc of an
ellipse and may have at most one maximal curvature point and one minimal
curvature point [24].

3.1. Curvature110

Given the importance of maximal curvature points in our construction, we
derive the t-values for the curvature extrema of rational Bézier curves in this
section. The curvature κi(t) of 2D curve ci(t) is

κi(t) =
det(c′i(t), c

′′
i (t))√

c′i(t) · c′i(t)
3 , (3)

and the local extreme curvature points are the roots of κ′i(t) = 0. For our
curves, κ′i(t) is a ratio between a polynomial and the square root of another
polynomial in the variable t. The denominator of this expression depends solely
on the length of the tangent c′i(t), which is non-negative everywhere. Hence, we
need only consider the numerator of κ′i(t) when analyzing its roots where the
the numerator is

det(c′i(t), c
′′
i (t))′(c′i(t) · c′i(t))−

3

2
det(c′i(t), c

′′
i (t))(c′i(t) · c′i(t))′

This expression is a quartic polynomial in t. When wi = 1, the leading coefficient
of the numerator is zero and the expression degenerates to a cubic polynomial.
Rewriting the numerator in the Bézier basis yields

(1− t)4

4(1− t)3t
6(1− t)2t2

4(1− t)t3
t4


T

·


−2w3

i |Pi,0 − Pi,1|2 + wi(Pi,0 − Pi,1) · (Pi,0 − Pi,2)
−w2

i |Pi,0 − Pi,1|2 + 1
4 |Pi,0 − Pi,2|

2

1
2wi(Pi,2 − Pi,0) · (Pi,0 − 2Pi,1 + Pi,2)
− 1

4 |Pi,0 − Pi,2|
2 + w2

i |Pi,1 − Pi,2|2
−wi(Pi,0 − Pi,2) · (Pi,1 − Pi,2) + 2w3

i |Pi,1 − Pi,2|2

 . (4)
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We care about the real roots of Equation (4) in interval [0, 1]. A general
quartic function has up to 4 real roots. Equation (4) may have 0, 1 or 2 roots
in range [0,1] depending on the parameter wi, which controls whether the curve
is piece of a hyperbola, parabola, or ellipse. The first two shapes can only have
zero or one critical points of curvature in the interval (0, 1). In the elliptical115

case, Equation 4 can have up to four roots corresponding to the two maximal
and two minimal points of curvature on an ellipse, but at most two of these
roots, corresponding to one maximal and one minimal curvature point, can fall
into the (0, 1) interval. Figure 1 shows each of these cases.

Figure 1: Rational Bézier curves may have 0, 1 or 2 critical points of curvature within the
parameter range (0,1). Solid black lines are Bézier control polygons, red lines are rational
Bézier curves, blue lines are axes of symmetry for the conic sections. The first row shows a
hyperbola (first two images) and a parabola (last two images), each of which can have one
or zero max curvature points within a rational Bézier curve. The last row shows an ellipse,
which may have 0, 1 min, 1 max, or 1 min and 1 max curvature points.

To build a curvature continuous curve, we also need the value of curvature120

at the end-points of each rational quadratic curve. Setting t to 0 or 1 in Equa-
tion (3) yields the curvature at the two end points:

κi(0) =
1

w2
i

∆(Pi,0, Pi,1, Pi,2)

||Pi,1 − Pi,0||3

κi(1) =
1

w2
i

∆(Pi,0, Pi,1, Pi,2)

||Pi,2 − Pi,1||3
(5)

where ∆(·, ·, ·) is the signed area of a triangle.

3.2. Interpolation at Critical Curvature Points

For each curve segment ci(t), we want the input point Qi to be located at a
local maximum of curvature. For a single curve, we can do so by rewriting ci(t)
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in a Lagrange-type basis in terms of three interpolated points: Pi,0, Qi, and
Pi,2. Since we know the parameters associated with the interpolated end-points
(i.e.; ci(0) = Pi,0 and ci(1) = Pi,2), we need only find the parameter ti such that
Qi is at the point of maximum curvature. Solving for Pi,1 in Equation 2 yields

Pi,1 =
((1− ti)2 + 2(1− ti)tiwi + t2i )Qi − (1− ti)2Pi,0 − t2iPi,2

2(1− ti)tiwi
. (6)

Substituting Equation 6 into Equation 4 gives a simple, polynomial expression
for ti in terms of the three interpolated points

−wiAi(1− ti)4 − (Ai +Bi)(1− ti)3ti + (Bi + Ci)(1− ti)t3i + wiCit
4
i = 0 (7)

where125

Ai = (Pi,0 −Qi) · (Pi,0 −Qi)
Bi = (Pi,0 −Qi) · (Pi,2 −Qi)
Ci = (Pi,2 −Qi) · (Pi,2 −Qi).

Though a general quartic polynomial may have multiple or no roots in range
[0, 1], we prove that Equation 7 always has a unique root in [0,1] in Appendix A.
Notice here we only solved the root for κ′(t)=0, which means the interpolated
point Qi is either a local minimum or a maximum point. If a small weight
wi < 1 is chosen for point Pi,1, Qi may be a local minimum of κ(t). However,130

in practice, our choice of weight function and optimization procedure converges
to a local maximum point. When wi ≥ 1, all interpolated points will be local
maximum points of κ(t).

4. Curve Construction

Our strategy to construct a curve satisfying our interpolation, curvature135

continuity, and maximal curvature constraints is to form an energy encoding all
of these constraints. While the energy is nonlinear, which may make finding its
minimum difficult, we will provide a method for choosing an initial guess close to
the minimum in Section 5.1. From there, our optimization can quickly converge
to the minimal result. Note that this is a different strategy than [1] used for140

non-rational curves. Instead, the authors provide an alternating algorithm that
performs well in practice but does not guarantee that a minimum is actually
reached. While this section assumes that the curve is closed, we will relax this
assumption to handle curves with boundaries in Section 6.

4.1. Interpolation constraints145

While we use an energy for the majority of our geometric properties, we
encode the interpolation condition as a constraint. Compared with the other
terms, interpolation is a simple expression that involves only a few variables.
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Since we allocate one curve per input point, we can combine Equations 1 and 2
to produce a set of polynomial constraints:

...
(1− ti)2(Pi,0 −Qi) + 2(1− ti)tiwi(Pi,1 −Qi) + t2i (Pi,2 −Qi) = 0

...

(8)

4.2. Smoothness

To create curvature continuity between consecutive curves ci−1(t) and ci(t),
we must enforce C0 and G1 continuity in addition to curvature continuity. C0

continuity is trivial and simply requires Pi−1,2 = Pi,0. G1 continuity requires
that the tangents of each curve point in the same direction where the two curves
meet. Substituting the C0 condition into this requirement yields the expression

Pi−1,2 = Pi,0 = (1− λi)Pi−1,1 + λiPi,1 (9)

where λi ∈ (0, 1). We utilize the C0 and G1 conditions as constraints and
substitute Equation 9 into Equation 8 to eliminate the variables Pi,0 and Pi,2
from the optimization with new variables λi.

Curvature continuity requires the curvatures at the end-points of consecutive
curves to be equal. As noted by [1], requiring curvature continuity for quadratic
curves at an inflection point is impossible since quadratics cannot possess zero
curvature unless the entire curve degenerates to a line. Rational quadratics
possess these same property. Hence, we cannot require that curves are curvature
continuous everywhere. Instead, like [1], we require that the absolute value of
curvature is continuous, meaning that the magnitude of curvature is continuous
at inflection points but the sign of curvature will be discontinuous. We can
easily encode this requirement as an error function of the squared curvature
using Equation 3.

(ki−1(1)2 − ki(0)2)2 =

(
∆(Pi−1,0, Pi−1,1, Pi−1,2)2

w4
i−1||Pi−1,1 − Pi−1,0||6

− ∆(Pi,0, Pi,1, Pi,2)2

w4
i ||Pi,2 − Pi,1||6

)2

Combining this expression with Equation 9 gives

1
||Pi,1−Pi−1,1||12

(
∆(Pi−2,1,Pi−1,1,Pi,1)2(1−λi−1)2

w4
i−1λ

4
i

−
∆(Pi−1,1,Pi,1,Pi+1,1)2λ2

i+1

w4
i (1−λi)4

)2 (10)

Given that ||Pi,1 − Pi−1,1|| > 0, dropping this term does not affect the
nullspace of this energy term. Eliminating this term gives our final energy

EG2({Pi,1, λi})

=
n∑
i=1

(
∆(Pi−2,1,Pi−1,1,Pi,1)2(1−λi−1)2

w4
i−1λ

4
i

− ∆(Pi−1,1,Pi,1,Pi+1,1)2λ2
i+1

w4
i (1−λi)4

)2

.
(11)
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4.3. Maximum Curvature150

For each curve segment ci(t), Equation 7 should be satisfied to ensure Qi
is interpolated at local max curvature point. We utilize the L2 norm of Equa-
tion 7 and normalize the expression by dividing by the leading coefficient of the
polynomial. This process yields the energy term for local maximal curvature

Ec({Pi,j , ti})
=
∑n
i=0(

−wiAi(1−ti)4−(Ai+Bi)(1−ti)3ti+(Bi+Ci)(1−ti)t3i +wiCit
4
i

Li
)2 (12)

where Li is the leading coefficient of the numerator in equation (12).

Li =

{
(wi − 1)(Ci −Ai), wi 6= 1

Ai − 2Bi + Ci, wi = 1

If we substitute Equation 9 into Equation 12, we can write Ec solely in terms
of the variables Pi,1, λi, ti.

4.4. Rational Weights

Up until this point, we have assumed that the rational weight wi has been
fixed. wi provides the user additional control over the shape of the curve and155

can be used to adjust the shape of the curve. However, for users who do not
wish to manually adjust wi, we can choose wi automatically to optimize for
certain geometric properties of the curve. Our motivation is to choose wi to
produce a circle when the user places input points Qi along a circle. Unlike
other methods [19], we do not require that the vertices are evenly spaced in160

terms of arc length along the circle to reproduce this shape.
To choose wi we write wi as a function w̃i of {Pi,1, λi}. We then write an

energy term that measures the deviation of wi from these weights as

Ew(Pi,1, λi, wi) =

n∑
i=1

(wi − w̃i(Pi,1, λi))2 (13)

4.4.1. Minimum Eccentricity Weights

All rational quadratic curves define a conic section as the solution to an
implicit quadratic equation

ax2 + bxy + cy2 + dx+ ey + f = 0. (14)

We can easily transform our parametric quadratics into this implicit form using a
resultant [25]. To create circles, we use the eccentricity of this conic, which mea-
sures the deviation of the shape from a circle [26]. For circles, the eccentricity
is 0. Ellipses have an eccentricity between 0 and 1. Parabolas have eccentricity
1. And hyperbolas have eccentricity greater than 1. The eccentricity for conics
of the form in Equation 14 is

ε =

√
2
√

(a− c)2 + b2

a+ c+
√

(a− c)2 + b2
.
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Our strategy is to choose wi that minimizes the eccentricity squared ε2. Sub-
stituting the coefficients of the implicit form of Equation 1 into the definition
of ε2, taking its derivative with respect to wi, and solving for the critical point
with respect to wi yields a very simple expression for the rational weight [20]

ŵi =

√
|Pi,2 − Pi,0|2

2(|Pi,0 − Pi,1|2 + |Pi,2 − Pi,1|2)
. (15)

This expression is less than 1 for points in general position and, therefore, leads
to elliptical arcs.

Figure 2 show an example of a single rational Bézier curve with three fixed165

control points. This figure shows the entire conic section instead of just the
portion of the curve the corresponds to the Bézier curve with its parameter in
[0, 1]. The only difference between the three curves shown is the rational weight
wi. We show two curves with fixed weights of 0.3 and 0.7 in blue and the curve
with minimum eccentricity weight of 0.593 in red. Note that it is not possible170

to generate circle from this fixed set of control points by only manipulating wi.

0.3

0.593

0.7

Figure 2: A rational Bézier curve with unit weights for the two end-points and different ellipses
generated by modifying the weight of the central control point, which is set to 0.3 (blue), 0.7
(blue), and 0.593 (red), which is the minimal eccentricity weight for these control points.

Unfortunately, these minimum eccentricity weights cannot be directly used
in our optimization. Equation 15 approaches zero when Pi,0 approaches Pi,2.
Though a zero weight is valid for rational Bézier curves, Equation 6 becomes
undefined, which leads to instability in the subsequent optimization for some175

shapes. Looking at this case from a geometric viewpoint, the control points
of the Bézier curve are collapsing to form a line and potentially flipping ori-
entation, which should change the sign of the curvature along the curve. This
scenario corresponds to a cusp in the curve. Therefore, reproduction of a circle
is undesirable as the curve at its point of maximum curvature should have a180

curvature value that approaches ∞.
Our solution to this issue is to simply clamp the minimum value of a weight

to 0.5 to avoid these instabilities. Doing so means that we cannot produce a
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Figure 3: Each row contains the same input points Qi but uses different weights for the input
points in each column. The weights from left to right are: 0.6, 1, 2, and our clamped min
eccentricity weight.

circle if the arc length spanned by the end-points of a Bézier curve is more than
1
3 of the circle’s perimeter. For a set of input points consisting of three points, we185

will only be able to produce a circle from an equilateral triangle. However, for
other curves consisting of more control points, most non-uniform distributions
of input points on a circle can reproduce that circle. Figure 3 shows an example
of four, non-uniformly spaced points on a circle and the curves produced using
different weights.190

With this modification, our weight function wi becomes

w̃i =

{
µiŵi µiŵi >

1
2

1
2 otherwise

(16)

The coefficient µi in Equation 16 provides a form of tension control for the user
to control the shape of the curve with the initial µi set to 1. The user can
adjust this value to make the curve more round by reducing µi or more pointed
by increasing µi. Figure 8 shows an example of modifying µi to affect the shape
of the curve.195

5. Optimization

Given the input points {Qi}ni=1, we use the energy terms from previous
sections to write an optimization problem for our curve as

min
Pi,1∈R2,λi∈(0,1),ti∈(0,1),wi>0

EG2(Pi,1, λi) + Ec(Pi,1, λi, ti) + Ew(Pi,1, λi, ti, wi)

(17)
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with the constraints

...

(1− ti)2((1− λi)Pi−1,1 + λiPi,1 −Qi) + 2(1− ti)tiwi(Pi,1 −Qi)
+t2i ((1− λi+1)Pi,1 + λi+1Pi+1,1 −Qi) = 0
...

, (18)

which are formed by substituting Equation (9) into Equation (8). Note that
Ew can be omitted if we do not desire automatic reproduction of circles, which
also removes wi from the variables but still gives the user control over the wi to
affect the shape of the curve.200

Since the constraints (18) are linear in the points {Pi,1}, we can solve for
the {Pi,1} as a function of {λi, ti, wi} from (18). Then insert the expressions
of Pi,1 back to (17) and generate a new optimization with reduced number of
variable:

min
λi,ti,wi

EG2(λi, wi, ti) + Ec(λi, wi, ti) + Ew(λi, wi, ti). (19)

The constraints on the variables are now simplified to λi ∈ (0, 1), ti ∈ (0, 1) and
wi > 0. We use the Eigen library for solving linear system of {Pi,1} and use the
Alglib library for boxed constrained numerical optimization (19).

5.1. Initial guess

While any initial guess for the optimization could be chosen, we start with a205

very simple initial guess with λi = 0.5, ti = 0.5, and wi = 1. Though Section 5
optimizes the reduced form of the energy with the Pi,1, we use the Pi,1 as part of
our iterative strategy for forming the initial guess. Using the values of λi, ti, wi,
we solve for the Pi,1 from Equation (18), which produces an interpolatory C1

curve. Yet this curve almost certainly does not satisfy the automatic weight210

conditions, curvature continuity, or maximum curvature conditions.
In most cases, this simple initial guess can lead to slow convergence. To

accelerate the optimization, we propose a modification of the optimization from
[1]. In that paper, the authors provide an iterative method to find their polyno-
mial curve. However, the authors give no proof of convergence of this procedure215

nor do they show any energy function that their iterative method optimizes.
We provide a similar, iterative method for refining the initial guess before

optimization. We iteratively solve for different variables by minimizing each
term in Equation (17) in turn. Such a strategy is not guaranteed to minimize
the total energy in Equation (17) but is only designed to create a better initial220

guess for the nonlinear optimization. In practice, this procedure rapidly refines
the initial guess to a curve close to the minimum of our energy, which is then
refined by the optimization procedure.

Starting from the current values of λi, ti, wi, we first hold all variables con-
stant except for wi and solve Equation (13) to make Ew = 0. Next we solve for225

ti by holding the λi, wi, Pi,1 to make Ec = 0. Hence, each ti is defined by the

11



root of the quartic polynomial from Equation (7). Our next step is to hold
all variables constant except for the λi and solve for λi from Equation (10) to
make EG2 = 0. Finally we solve the linear system in Equation (18) to update
the Pi,1. We iterate this entire process several times.230

This procedure projects the current solution onto each energy term in turn
along the direction of only one set of variables. While there is no guarantee that
the solution converges, we observe rapid convergence towards the minimizer for
the early iterations with progress slowing afterwards. Hence, we only use this
procedure to find a close initial guess for the optimization in Section 5, which235

then converges rapidly to the solution. Algorithm 1 provides pseudo code for
the entire optimization procedure. Note that, in an interactive system, we can
take advantage of the temporal coherence of prior solutions to further accelerate
the optimization. To do so, we use the results from the previous optimization
as the initial guess for the procedure instead of the default values for λi, ti, and240

wi.

Algorithm 1 Rational Curve

1: Input: {Qi}, {µi}
2: procedure Init guess
3: {λi} ← 0.5
4: {ti} ← 0.5
5: {wi} ← 1
6: {Pi,1} ← linearSolve Eq.(18)({λi, ti, wi})
7: for j ← 1 to 60 do
8: {wi} ← w̃i(Pi,1, λi)
9: {ti} ← quartic root of Eq. (7)

10: {λi} ← solve from Eq. (10)
11: {Pi,1} ← linearSolve Eq.(18)({λi, ti, wi})
12: return {λi, ti, wi}
13: procedure energy(λi, ti, wi)
14: {Pi,1} ← linearSolve Eq.(18)({λi, ti, wi})
15: return EG2(Pi,1, λi) + Ec(Pi,1, λi, ti) + Ew(Pi,1λi, wi)

16: procedure main
17: {λi, ti, wi} ← InitGuess()
18: {λi, ti, wi} ← minimize Energy(λi, ti, wi) with 0 < λi, ti < 1, wi > 0
19: {Pi,1} ← linearSolve Eq.(18)({λi, ti, wi})
20: Output the control polygons using {Pi,1, λi, wi}
21: return

6. Curves with Boundary

Our algorithm is also applicable to open curves. The only difference is that
we do not treat points cyclically and add two end points.
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Figure 4: An open curve with 6 input points consists of 4 rational Bézier curve segments. The
interior points Qi=1...4 are local max curvature points while Q0 and Q5 form the end points.

Given n + 2 input points {Q0, Q1, · · · , Qn+1} and n weights {wi}ni=1, we245

compute the parameters {λi}ni=2, {ti}ni=1 and n off-curve points {Pi,1}ni=1 to
generate n rational Bézier curve segments {ci(t)}ni=1 for {Q1, · · · , Qn}. The
only difference from before is that Pi,0 = Q0 and Pn,2 = Qn+1. Figure 4 shows
an example of such a curve when n = 4.

7. Results250

Our curves extend the geometric properties of [1] by introducing rational
weight parameters and improve the optimization procedure for these curves.
Figure 3 shows the effect of choosing different rational weights on the shape of
the curve. In each case the weights for all control points are uniform though the
user could set weights on a control point by control point basis. As the weights255

become higher, the curves tend to become sharper, though still smooth. When
all weights are one, we produce the piece-wise polynomial κ-curves [1]. The right
portion of figure 3 shows the result of our minimum eccentricity weights with
the bottom right figure reproducing a circle as the four points are co-circular
even though they are non-uniformly spaced on a circle.260

Our minimum eccentricity weights do not require that the user set any
weights individually on the curve. Instead, our method chooses the weights
automatically through our optimization. At the same time, the minimum ec-
centricity weights become unstable as weights approach zero, which leads to
our clamped solution. Figure 5 shows the results of clamping our minimum265

eccentricity weights compared to κ-curves [1]. In both cases, our minimum
eccentricity weights provide a “fairer” curve as measured by variation of curva-
ture. At the same time, all curves have the property that the local maximum of
curvature is reached at the control points even though the (absolute value of)
curvature is near constant for the far left image. Each curve is also curvature270

continuous everywhere except at inflection points.
In figure 5 (middle), our clamped minimum eccentricity weights produce a

solution similar to κ-curves though a bit more round. In regions where curves
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Figure 5: The purple lines show curvature normals. Each picture uses the same input points
with different weight functions. From left to right: min-eccentricity weights, clamped min-
eccentricity weights, and the original κ-curve.

have concave corners, our clamped minimum eccentricity weights often produce
shapes that locally resemble κ-curves. However, figure 6 shows an example275

with mostly convex (though overlapping) curves. In these cases, our clamped
minimum eccentricity weights appears far closer to the unclamped version of
the curves than κ-curves. Figure 7 shows the results of our method on a non-
symmetric shape with non-uniform control point spacing from [7]. Figure 8
demonstrates our minimum eccentricity weights where the user modifies the pa-280

rameter µi at a single control point to make the curve appear sharper. Figure 9
shows our method creating a cusp as points move closer to one another. Cusps
represent local maxima of curvature and, hence, can only appear at input points.

Like κ-curves, our solution is a global solution, which means the whole curve
will change after a small movement of a control point. However, in practice, the285

influence of a control point drops dramatically away from that point. Figure 10
shows an example of this effect using our minimum eccentricity weights. In
both cases the original curve is shown in blue with the newly modified red curve
drawn on top. The resulting curve only changes within a small region away
from the initial control point in any significant fashion.290

Our paper also improves upon the original κ-curve optimization by con-
structing a formal energy that can be minimized in addition to extending the
method to rational curves. Figure 11 shows the results of this optimization with
the top row having a uniform weight of one and the bottom using our minimum
eccentricity weights. The starting curve appears on the left and its error is listed295

below. After performing 60 iterations of our initial guess from Section 5.1, we
obtain the curve in the middle. For many applications, this curve may be a
sufficiently good approximation. However, optimizing our energy function pro-
duces a significant reduction in error as shown on the right, which does affect
the shape of the curve and is particularly visible on the bottom row.300
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Figure 6: Comparisons between different weight choices. Left to right: min eccentricity
weights, clamped min eccentricity weights, original κ-curve.

8. Limitations

In our construction we require that the rational weights wi for all off-curve
Bézier control points Pi,1 be positive. The implication of this requirements is
that all pieces of the rational quadratic curve are minor arcs. Hence, in the
elliptical case, the arc cannot span more than half of an ellipse. This restriction305

implies that when all input points are on a circle, the curve produced by our
minimum eccentricity method may not form a circle in some scenarios. In
particular, when the end-points of each Bézier curve Pi,0, Pi,2 span more than
half a circle, we cannot produce an exact circle.

The connection between the end-points of each Bézier curve and the control310

points the user specifies is, unfortunately, governed by a non-linear optimization.
Let θ be the angle between consecutive input points formed from the center of
the circumscribed circle as shown in figure 12. If the angle spanned by two
consecutive segments is less than π, for all segments, then the end-points of
each Bézier curve cannot span more than half a circle since Pi,0 lies in between315
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Figure 7: An asymmetric example with non-uniformly spaced control points. From left to
right: min eccentricity weights, clamped min eccentricity weights, original κ-curve.

Figure 8: Clamped minimum eccentricity weight curves with tension values µi set to 1 (left)
and with the weight of the top input point set to 2 (middle). The right picture shows the
overlapping curves for comparison.

Qi−1 and Qi. Yet this property is too restrictive in practice. We tested our
technique on many different point distributions of input points Qi on a circle.
In our tests we found that if the angle spanned by consecutive input points
was less than π, our method reproduced the circumscribed circle. However, our
method would often fail to produce a circle if the angle spanned by consecutive320

input points exceeded π. Figure 12 shows several examples where non-uniform
point distributions produce circles and two failure cases where our method was
unable to reproduce a circle.
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Appendix A. Uniqueness of the root of equation (7)

Proof. The right-hand-side (RHS) of equation 7 is a polynomial of degree 4. If
we use the notation that v0 = P0 −Q and v2 = P2 −Q, the Bézier coefficients
of this polynomial are

(−w2
0w1|v0|2,−

1

4
w2

0w2v0 · (v0 + v2), 0,
1

4
w0w

2
2v2 · (v0 + v2), w1w

2
2|v2|2) (A.1)

where v0 6= 0, v2 6= 0, and wi > 0 for i = 0, 1, 2.
We want to show that there is a unique root t in [0, 1]. When t = 0, the390

value of the RHS of equation7 is the first coefficient of equation A.1, which is
negative. When t = 1, the value is the last coefficient of equation A.1, which is
positive. So the there must be at least one root t between zero and one because
the function is continuous.

To prove the uniqueness, we use the fact that polynomials in Bézier form
follow Descartes’ rule of signs for bounding the number of real roots of a poly-
nomial [27], which means the number of real roots is less than or equal to the
number of sign changes in the sequence of the polynomial’s coefficients. In our
problem, we have five coefficients with the first being negative, the middle 0,
and the last positive. Since weights wi are always positive, we only need to
know the sign of v0 · (v0 + v2) and v2 · (v0 + v2). If one of these coefficients is
zero, then no matter what the other is, then the sign changes in the coefficients
is one. Hence, there would be at most one root in [0, 1]. If both coefficients
are non-zero, then the number of sign changes of the coefficients are always one
unless both v0 · (v0 + v2) and v2 · (v0 + v2) are negative, which is not possible
because the sum is non-negative:

v0 · (v0 + v2) + v2 · (v0 + v2) = |v0 + v2|2 ≥ 0 (A.2)

Therefore, the number of times the coefficients change signs in equation A.1 is395

always one, and there is exactly one root in [0, 1] for equation 7.
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